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IV. ConNcLusioNs

The transverse resonance approach associated with the
Runge—Kutta numerical integration technique has been em-
ployed to calculate the propagation characteristics of the domi-
nant mode in single-V-groove guide. Numerical results for the
guide wavelength of the dominant mode in a single-V-groove
guide have been obtained and shown to agree well with avail-
able results in the literature. The analysis of a double-V-groove
guide has also been performed. Although the method described
in this paper is applied to the analysis of the V-shaped groove
guide, the analysis can be extended to quite general shapes such
as semicircular grooves, trapezoidal grooves, and closed V-groove
guides.
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Correct Determination of TE and TM Cutoff
Wavenumbers in Transmission Lines
with Circular Outer Conductors
and Eccentric Circular
Inner Conductors
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Abstract —The cutoff wavenumbers of TE and TM modes (higher
order modes) in transmission lines with circular outer conductors and
eccentric circular inner conductors are carefully evaluated. The correct-
ness of Kuttler’s bounds is confirmed and the reason why some of the
values obtained lie outside the bounds and some of the modes could not
be found in Vishen’s paper is given. A reliable technigue for accurately
determining the roots of an analytical function is proposed for finding
cutoff wavenumbers in such a way as to avoid missing any modes.
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I. InTRODUCTION

Calculation of the cutoff wavenumbers of TE and TM modes
in transmission lines having a circular outer conductor and an
eccentric circular inner conductor has been of great interest to
many authors. By means of conformal mapping combined with
intermediate methods for the lower bounds and the Rayleigh—
Ritz method for the upper bounds, these cutoff wavenumbers
were evaluated by Kuttler [1] for several different relative di-
mensions of the structure. A special analytical shape perturba-
tion method [2] was developed by Roumeliotis et al. for treating
small eccentricities. Vishen et al. [3] employed a method which
may be conveniently used for evaluating the cutoff wavenumbers
in the structure for large or small eccentricities and different
radius ratios, and the examples in [1] were repeated. However,
some of the results computed by Vishen obviously contradict
Kuttler’s bounds. As we can see from [4], some confusion still
exists.

In this paper, the technique used in [3] is employed. Deficien-
cies of the formulation in [3] are pointed out, and by careful
derivation, a new expression is obtained. Cutoff wavenumbers of
the structure for all the cases considered in [3] are carefully
evaluated. All of our results lie in the bounds reported by
Kuttler and are quite close to the upper bounds. The reason
why some of the modes could not be found and some of the
values fall outside Kuttler’s bounds in [3] is given.

Like the analytical technique used here, many other methods,
among them the method of moments, also reduce cutoff
wavenumbers to the zeros of an analytical function. Hence,
correctly determining the zeros of an analytical function is a
problem of general interest. Some iterative algorithms, e.g.
Muller iteration, are frequently employed [5] for tackling the
problem. To the best of the authors’ knowledge, it is difficult to
avoid missing roots by simply using such iterative algorithms,
because one rarely knows how many zeros exist inside the given
frequency band. In this paper, a new technique is developed on
the basis of a combination of the contour integral method [6]
with Muller iteration. The method exhibits accuracy and effi-
ciency, as well as reliability.

II. ResuLts AND Discussion

We use the method employed in [3], i.e., separation of vari-
ables and the use of addition theorems for Bessel functions to
satisfy the boundary condition at the outer circular conductor.
This method, as pointed out by certain authors [4], is not new
and can be found in many papers. However, with the matrix
elements expressed in ratio forms of Bessel functions, the for-
mulas presented in [3] have deficiencies which may sometimes
result in mistakes. By a careful derivation (see the Appendix) we
obtain, for TE modes,

det [ 2,,,(k)] =0 1)

where the elements of the determinant are given by

P (k) = [T(kb)Y, (ka) =Y, (kb) ], (ka)]

[dy o m(kd) + (=1, (k)] (2)
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TABLE I
Cutorr WAVENUMBERS FOR TE MobpEs
Symmetric Modes Antisymmetric Modes
Our Vishen Kuttler Bounds Our Vishen Kuttler Bounds
Results etal. [2] Lower Upper Results etal [2] Lower Upper
1.32220 1.2522* 1.32027 1.32221 1,19175 1.1917 1.19001 1.19176
-2/3 2.4445 2.4365* 2.4408 2.4446 2.4304 2.4307* 2.4267 2.4305
2_ 02 3.6217 3.6209 3.6157 3.6218 3.6202 3.6203 3.6142 3.6203
- 4.7897 4.7897 4.7804 4,7901 4.7896 4.7896 4.7804 4.7899
5.9378 5.9379 5.9218 5.9385 5.9379 5.9379 5.9231 5.9385
1.5158 1.4407* 1.5132 1.5159 1.3741 1.3740 1.3715 1.3741
= 0475 2.7343 2.7256 2.7270 2.7345 2.7196 2.7187 2.7125 2.7198
d= 0'3 15 3.9237 3.9240 3.8978 3.9248 3.9237 3.9244 3.9069 3.9247
P 4.4035 — 4.342 4.407 5.0793 5.0796 5.041 5.083
5.0801 5.0799 4.977 5.084 5.4232 5.3686 5.325 5.427
1.5806 1.5619* 1.5766 1.5807 1.5435 1.5435 1.5393 1.5436
n=1/3 2.9065 2.9064 2.8968 2.9067 2.9064 2.9058 2.8966 2.9067
d=2/9 4.1152 4.1152 4.0944 41161 4.1152 4.1152 4.0955 4.1161
42342 4.4220* 4.2146 4.2356 5.1651 5.1606 5.131 5.167
5.2673 5.2669 5.219 5.270 5.2758 5.2758 5.237 5.279
1.40792 1.3793* 1.40694 1.40793 1.35218 1.3522* 1.35114 1.35219
05 2.6861 2.6849 2.6837 2.6862 2.6834 2.6838 2.6815 2.6840
Z 0'2 3.9295 3.9295 3.9247 3.9298 3.9295 3.9296 3.9247 3.9298
. 5.0175 —_ 4.9937 5.0192 5.1131 51131 5.1036 5.1138
5.1133 5.1131 5.1031 5.1139 5.8315 5.8106 5.793 5.834
1.6810 1.6650* 1.6768 1.6811 1.6489 1.6490 1.6446 1.6490
— 025 2.9679 2.9678 2.9445 2.9684 2.9678 2.9667 2.9547 2.9682
m _ 0'25 3.9861 — 3.939 3.988 41581 4.1579 4.120 4,160
d=0. 4.1650 41191 4.105 4.168 5.0581 5.0616* 4.978 5.060
5.2946 5.2942 5.111 5.303 5.2964 5.2965 5175 5.302
1.7944 1.7769 1.7603 1.7948 1.7583 1.7584 1.7330 1.7584
n = 0.15875 2.9992 2.9932 2.871 3.004 2.9879 2.9848 2.873 2.989
d=0.379 3.7703 3.8632* 3.432 3.775 4.1614 4.1590 3.78 4.17
4.1824 4.1808 3.76 4.21

and for TM modes

det[Q,,,(k)}=0 3)

with the elements of the determinant being
Q,(k) =[1,(kb)Y, (ka) - Y, (kb)J,(ka)]
[Ty + (= D) (k)] (4)

Here P and Q, which stand for the determinants, are in bold-
face italics to distinguish them from the quantities in [3]. In both
(2) and (4), [ = m for symmetric modes and [ =m +1 for anti-
symmetric modes.

It is obvious that both det[P,, (k)] and det[Q,, (k)] are
analytical functions and they have no singularities in finite
regions in the complex k plane. The cutoff wavenumbers are
their zeros on the real axis. Many methods can be employed to
determine the zeros of these functions.

In this paper, a new technique is developed for finding zeros
of an analytical function with high accuracy without missing any
roots. This is a problem of great importance, especially for
determining the cutoff frequencies of a waveguide. The contour
integral method, which has been widely used to compute the
external resonant frequencies of scattering objects, is based on
the residue theorem. With integrals along a closed contour, it
can determine the number of zeros (with multiplicity counted)
of an analytical function within a certain region (area inside the
integral contour) in the complex plane, as well as their values

with considerable accuracy. The method presented here, the
contour integral method combined with Muller iteration, is a
universal and powerful one for solving the problem. In our
program, values given by the contour integral method, which
usually have three or four significant decimal digits, are then
used as the initial values for Muller iteration to obtain the final
results, and higher precision is reached.

Since no poles of det[P,, (k)] and det[Q,,, (k)] have to be
taken into account, this algorithm is convenient to use. Provided
the contour integral is along a rectangular contour enclosing the
frequency band one is interested in, it can be numerically
performed by Gaussian formulas with high accuracy. Although
the procedure requires additional computation for contour inte-
grals, it requires no more CPU time than that needed by simply
using the Muller method, because iterations for cach zero
(usually four to six times in our procedure) are much less than
those needed by using the Muller method only.

Results are normalized by letting the radius of the outer
cylinder equal unity, i.e., b=1. The zeros of (1) and (3) have
been evaluated for several values of the eccentricity d and the
radius ratio n for the first five TE and TM modes, both
symmetric and antisymmetric. Numerical values accurate to the
sixth decimal place have been obtained, with the order of the
determinants up to 18.

Table I presents the symmetric and antisymmetric cutoff
wavenumbers for TE modes, while the corresponding values for
TM modes appear in Table II. The relative dimensions of the
structure tabulated were selected to be the same as those in [1]
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TABLE 11
Cutorr WAVENUMBERS FOR TM MODES

Symmetric Modes

Antisymmetric Modes

Our Vishen Kuttler Bounds Our Vishen Kuttler Bounds
Results etal [2] Lower Upper Results etal. [2] Lowe Upper
5.46953 5.4695 5.46911 5.47043 5.99176 59918 5.99121 5.99257
6.47472 6.4747 6.47403 6.47547 6.92031 6.9203 6.91953 6.92102
=05 730617 7.3062 730527 7.30683 771232 7.7123 771130 771299
d=01 7.86924 7.8692 7.86823 7.86982 8.4845 8.4845 8.4830 84852
8.49647 8.4965 8.4950 8.4972 9.3564 9.3564 9.3542 93572
4.8106 4.8106 4.80935 4.81191 55114 55114 55098 55125
6.1724 6.1724 6.1703 6.1735 6.7991 6.7991 6.7964 6.8002
n=05 7.3945 7.3945 7.3907 7.3957 7.9607 7.9607 7.9559 7.9619
d=02 8.4974 8.4974 8.4894 8.4991 9.0091 9.0091 £.9996 9.0106
9.3409 9.3409 9.2694 9.3488 9.9556 9.9556 9.9316 9.9577
43071 43071 43042 43118 5.1224 5.1222 5.1179 5.1257
5.8903 5.8903 5.8736 5.8944 6.6210 6.6210 6.5994 6.6251
n="05 73197 73197 7.240 7.325 7.9910 7.9910 7.876 7.997
d=03 8.2909 8.2909 8.081 8316 9.1877 9.1877 8.829 9.210
8.6388 8.6388 8382 8.646 9.2676 9.2676 8.900 9.276
6.2399 6.2399 6.2379 6.2420 6.9683 6.9683 6.9654 6.9702
7.6769 7.6769 7.6728 7.6787 8.3682 8.3682 8.3631 83700
n=2/3 9.0439 9.0439 9.0323 9.0456 9.7053 9.7053 9.6922 9.7071
d=02 10.3534 10.3536 10.318 10.356 10.9892 10,9892 10.947 10.992
11.6134 11.6184* 11539 11.616 12.2266 12.2266 12.128 12.229
3.4723 3.4723 3.4687 3.4752 42640 4.2640 42583 42680
4.9221 49221 49110 4.9249 55393 55393 5.5239 5.5425
n=025 59968 5.9268 5.893 5.930 6.6357 6.6357 6.582 6.641
d=0.25 6.7154 6.7154 6.591 6.723 7.7135 7.7135 7.443 7723
6.7527 6.7527 6.622 6.767 7.7243 7.7243 7.488 7.735
2.9824 2.9824 2.887 2.996 4.0338 40338 3.858 4.043
47868 4.7868 4.088 4.827 5.5432 5.5432 458 5.575
n=025 " song4 5.8084 5.877 6.9144 6.9144 6.992
d=05 6.2439 6.2439 6.323 7.1560 7.1560 7.208
7.5586 75592 7.735 8.1858 8.1858 8355

and [3]. Both tables also list the results of Vishen et al. [3] and
the lower and upper bounds provided by Kuttler [1] for purposes
of direct comparison.

From the tables one can find that all of our results are within
the bounds reported by Kuttler [1], and are very close to the
upper bounds without any exception. Provided our results are
correct, it can be found that for most cases Kuttler’s upper
bound is closer to the exact value and is good enough. Kuttler’s
upper and lower bounds are obtained independently by confor-
mal mapping and the Rayleigh—Ritz method, respectively. Thus
one can deduce that the Rayleigh-Ritz method is of high
accuracy for the structure, even for high modes.

For TM modes, our results coincide with those of Vishen
et al. [3] except for certain points, but for TE modes our results
do not agree with those of [3] very well. In our opinion, there
are two possible reasons why some of the roots (marked by a
dash) are missing and some (marked by an asterisk) lie outside
the bounds in [3]. The first is that the formulation in [3] has
some deficiencies. Many extrinsic singularities (poles) exist in
the expressions of P,,, (k) and Q,,,(k) in [3]. These poles do not
indicate any characteristics of the structure but result from
inappropriate mathematical derivation, and may sometimes lead
to mistakes. For example, they may cause missing modes in
some cases: when d = 0, if we select the radii ¢ and b to let

J,.(kia)=0 and J,(kb)=0

or
Y, (k,a)=0 and Y, (k,b)=0

it is obvious that k; and k, are cutoff wavenumbers of TM
modes although they are not roots of det[Q,,,(k)]. This means
that under certain circumstances, the cutoff wavenumber (zero
of det[P,, (k)] or det[Q,,,(k)]) may be canceled by the poles
(see the Appendix). '

The second reason is that the algorithm for finding zeros used
in [3] is not good enough; hence some results are inaccurate and
some modes are even missing. The functions get many disconti-
nuities of the second kind along the real frequency axis, because
det[P,, (k)] and det[Q,, (k)] have many poles. Hence, some
algorithms, e.g. bisection, are unsuitable for searching for the
zeros of these functions. On the other hand, by simply employ-
ing iterative algorithms, such as Muller iteration, it is also
difficult to determine the number of zeros of the function within
the given frequency band and to select good initial values.
Nevertheless, without appropriate initial values and the number
of zeros to find, iterative algorithms are somewhat blind and
consequently apt to result in missing modes, as occurs in [3]. The
low precision of certain values in [3], in the authors’ opinion,
should be ascribed to the poor quality of the computing pro-
gram.
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APPENDIX

Taking the TM mode (antisymmetric case) as an example, one
gets from [3]

o

W(r,0)= Y [A,.J.(kr)+B,Y,(kr)]sin(m8) (Al)

m=1
and
A, J, (ka)y+ B,Y, (ka)=0. (A2)
By the addition theorem fdr Bessel functions,
Z(kr)e™ =Y, Z, . (kr')J,(kd)e!P*™?  (A3)

p=-—o

Thus we obtain the wave function on the outer conductor:

©

ll’(r’e)|r’=b = Z

m=1

{ i [Am]m+p(kb)+BmYm+p(kb)]

‘Jp(kd)} sin(m+p)o'. (A4)

Let n=m+ p, and change the order of summation in (A4):

$(r,0)lr—p= i { i [ AT, (kb)+ B,Y,(kb)]7, _,(kd)

n=1\m=1
—[ A, T _.(kb)+ BmY~n(kb)]J~m—n(kd)}

‘sin(n9").

It is known that

Z_(x)=(-1)"Z,(»).
Hence

©

(p(ra 0)|r’=b = Z

n=1

{ S [ ATy (kb) + B, Y, (k)]

N k) + (1)U (kd) | sin(n6). (AS)
[ -

On the outer conductor, the Dirichlet boundary condition should |

be met, that is,
([l(r,0)|r'=b =(.

From (A5), §(r, ) is represented as a Fourier series of 6'. So we
deduce that

(A6)

S (A do(kb)+ B, Y,(kb)]
m=1

n=1,2,3,".
(AT)

(4, k) + (=0T, L (kd)] =0,

And by (A2), we can define
A B

m= ym(Za) T T (ka)

C
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Note, if C,,=0, then A,,=B,, =0 can always hold, and if
C,, #0, we can deduce 4,,# 0 or B,, # 0 (because Y, (ka) and
J_(ka) can never have the same zeros). Hence (A7) is equivalent
to the following equations:

E‘, Cpl 1.(kb)Y,(ka) = Y, (kb)J,(ka)]
m=1

(T mlkd) + (1), (k)| =0, n=1,2,3--- (A8)

written in matrix form, i.e.,

[2,m(B)][C,]=0

in which m and n indicate columns and rows, respectively, and
Q.. = [1,(kb)Y, (ka)—Y,(kb)J],(ka)]

[T mkd) +(— 1), (k)]
Suppose, for k = k1, that makes det[@,,, (k)] vanish, i.e.,

det[Q,,,(kmm)]=0.

Then of course one can get a nontrivial solution [C,,]1# 0. So,
[4,,]#0 or [B,]+# 0, and the field can take a nontrivial solu--
tion. This means that k., represents a cutoff wavenumber of
the waveguide. Otherwise, if

det[@,,,(km)] #0

one readily deduces that [C,,] can take a trivial solution only,
and consequently [4,,] and [B,,] take a trivial solution simulta-
neously. This means that the field takes a trivial solution, so
k1 cannot be a cutoff wavenumber.

If one defines

expressions for Q,,.(k) in [3] can be obtained. However, prob-
lems sometimes arise. Although [C,,] has a trivial solution only,
[A4,,] and [B,,] can take a nontrivial solution, provided ka is a
zero of J,(x) or Y,(x). This means thdt when the cutoff
wavenumber coincides with a zero of J,(x) or Y,(x), it will
probably be missing.

Introducing a Neumann boundary condition into the above
procedure and taking derivatives with respect to #’ on both sides
of (A3), one can obtain expressions for P, (k). A discussion of
TE modes is similar to the above.

REFERENCES

[1] J. R. Kuttler, “A new method for calculating TE and TM cutoff
frequencies of uniform waveguides with lunar or eccentric annular
cross section,” IEEE Trans. Microwave Theory Tech., vol. MTT-32,
pp. 348-354, Apr. 1984,

[2] 1. A. Roumeliotis, A. B. M. Siddique Hossain, and J. G. Fikioris,
“Cutoff wave numbers of eccentric circular and concentric
circular—elliptic metallic waveguides,” Radw Sci., vol. 15, pp.
923-937, Sept. 1980.

[3] A. Vishen, G. P. Srivastava, G. S. Singh, and F. Gardiol, “Calcula-
tion of cutoff wavenumbers for TE and TM modes in tubular lines
with offset center conductor,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-34, pp. 292-294, Feb. 1986.

4] J. G. Fikioris and J. A. Roumeliotis, “Comments on calculation of
cutoff wavenumbers for TE and TM modes in tubular lines with
offset center condyctor,” IEEE Trans. Microwave Theory Tech., vol.
MTT-35, pp. 469470, Apr. 1987.



1420

[5] M. Swaminathan, E. Arvas, T. K. Sarkar, and A. R. Djordjevic,
“Computation of cutoff wavenumbers of TE and TE Modes in
waveguides of arbitrary cross sections using a surface integral formu-
lation,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 154159,
Feb. 1987.

[6] C. E. Baum, “Toward an engineering theory of electromagnetic
scattering: the singularity and eigenmode expansion method.” in
FElectromagnetic Scattering, P. L. E. Uslenghi, Ed. London: Aca-
demic Press, 1978.

An Efficient Algorithm for Transmission Line
Matrix Analysis of Electromagnetic Problems Using
the Symmetrical Condensed Node

Cheuk-yu Edward Tong and Yoshiyuki Fujino

Abstract —The symmetrical condensed TLM node has been closely
examined. An efficient algorithm has been developed from the results of
this study which significantly improves the numerical efficiency of the
node. Certain physical aspects of the symmetrical condensed node are

K3

also discussed.

1. INTRODUCTION

The transmission line matrix (TLM) method has now been
established, owing to the works of Johns [1] and Hoefer [2], as
one of the most powerful time-domain solvers of electromag-
netic problems {3], [4].

The symmetrical condensed node invented by Johns [5] has
proved to be a particularly valuable tool in TLM analysis. Since
it represents both the electric and the magnetic field at the same
point in space, it is more attractive than the ecxpanded node
used in other TLM networks [6], in the Finite-Difference Time-
Domain (FDTD) method [7], and in the spatial network method
[8]. Besides, as a consequence of the simplicity of node topology,
ambiguities of interfaces and boundaries are removed. The node
has recently been extended to cover lossy media [9].

The disadvantage of the symmetrical condensed node is that
no equivalent circuit can be drawn up to represent it. It is solely
characterized by a scattering matrix. The user, therefore, has to
perform a linear transformation using an 18X 18 scattering
matrix at each nodal point. This means that the numerical
efficiency is inherently low. Further, the nature of this scattering
matrix has rarely been discussed.

In this paper, we demonstrate that an efficient algorithm can
be obtained for the symmetrical condensed node. Such an
algorithm not only shortens the computation time but also helps
to unlock the physics hidden behind the scattering matrix. We
shall first discuss the case of the original node hefore moving on
to the lossy node. Finally, numerical examples will be presented.
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II. Tue SymMMETRICAL CONDENSED NODE

The basic structure of the symmetrical condensed node as
proposed by Johns is given in Fig. 1. It is connected to each of
its six neighbors by a pair of transmission lines, carrying orthog-
onal polarizations. These lines are numbered 1 to 12. The node
is also connected to six stubs, one for each field component. The
three electric or permittivity stubs (numbered 13 to 15) are
open-circuit, while the magnetic or permeability stubs (16 to 18)
are short-circuit. Hence, each node receives 18 input impulses at
each time step.

Scattering takes place at the center of the node. The 18 input
impulses V¥ are scattered to produce 18 output impulses V*
into the 18 ports:

Vi=SV (1)

The scattering matrix, S, has been derived by Johns from
Maxwell’s equations and is shown in Fig: 2. The elements of the
matrix assume the following values:

_)Tv Zq
a,,= +
P4 2(44Y,)  2(4+Z,)

4
by=e,= 2(4+7)

_ -Y Z
77 2(4+4Y,)  2(4+Z,)

c

4
Y=la= 501 z,)
fq=quq
8 =Y,b,

_(%-9
(Y, +4)
. (4_24)
la" 4+ z,)

where the subscripts p,g = x, y, or z. The subscript p is related
‘to the associated permittivity stub of the port in question and ¢
is related to the associated permeability stub (See Fig. 2 for the
associations). For example,

829 = Cyy-

Note that Y, is the normalized characteristic admittance of the
electric stub p, and Z, is the normalized characteristic

impedance of the magnetic stub g.

III. THE SCATTERING MATRIX

Although the scattering matrix appears to be very compli-
cated, it possesses a high degree of symmetry. We have ex-
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