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IV. CONCLUS1ONS

The transverse resonance approach associated with the

Runge–Kutta numerical integration technique has been em-

ployed to calculate the propagation characteristics of the domi-

nant mode in single-V-groove guide. Numerical results for the

guide wavelength of the dominant mode in a single-V-groove

guide have been obtained and shown to agree well with avail-

able results in the literature. The analysis of a double-V-groove

guide has also been performed, Although the method described

in this paper is applied to the analysis of the V-shaped groove

guide, the analysis can be extended to quite general shapes such

as semicircular grooves, trapezoidal grooves, and closed V-groove

guides.
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Abstract —The cutoff wavenumbers of TE and TM modes (higher
order modes) in transmission lines with circular outer conductors and
eccentric circular inner conductors are carefully eyaluated. The correct-
ness of Kuttler’s bounds is confirmed and the reason why some of the

values obtained lie outside the bounds and some of the modes could not
be found in Vishen’s paper is given. A reliable technique for accurately
determining the roots of an analytical function is proposed for finding
cutoff wavenumbers in such a way as to avoid missing any modes.
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I. INTRODUCTION

Calculation of the cutoff wavenumbers of TE and TM modes

in transmission lines having a circular outer conductor and an

eccentric circular inner conductor has been of great interest to

many authors, By means of conformal mapping combined with

intermediate methods for the lower bounds and the Rayleigh-

Ritz method for the upper bounds, these cutoff wavenumbers

were evaluated by Kuttler [1] for several different relative di-

mensions of the structure. A special analytical shape perturba-

tion method [2] was developed by Roumeliotis et al. for treating

small eccentricities. Vishen et al. [3] employed a method which

may be conveniently used for evaluating the cutoff wavenumbers

in the structure for large or small eccentricities and different

radius ratios, and the examples in [1] were repeated. However,

some of the results computed by Vishen obviously contradict

Kuttler’s bounds. As we can see from [4], some confusion still

exists.

In this paper, the technique used in [3] is employed. Deficien-

cies of the formulation in [3] are pointed out, and by careful

derivation, a new expression is obtained. Cutoff wavenumbers of

the structure for all the cases considered in [3] are carefully

evaluated. Afl of our results lie in the bounds reported by

Kuttler and are quite close to the upper bounds. The reason

why some of the modes could not be found and some of the

values fall outside Kuttler’s bounds in [3] is given.

Like the analytical technique used here, many other methods,

among them the method of moments, also reduce cutoff

wavenumbers to the zeros of an analytical function. Hence,

correctly determining the zeros of an analytical function is a

problem of general interest. Some iterative algorithms, e.g.

Muller iteration, are frequently employed [5] for tackling the

problem. To the best of the authors’ knowledge, it is difficult to

avoid missing roots by simply using such iterative algorithms,

because one rarely knows how many zeros exist inside the given

frequency band. In this paper, a new technique is developed on

the basis of a combination of the contour integral method [6]

with Muller iteration. The method exhibits accuracy and effi-

ciency, as well as reliability.

H. RESULTS AND DISCUSSION

We use the method employed in [3], i.e., separation of vari-

ables and the use of addition theorems for Bessel functions to

satisfy the boundary condition at the outer circular conductor.

This method, as pointed out by certain authors [4], is not new

and can be found in many papers. However, with the matrix

elements expressed in ratio forms of Bessel functions, the for-

mulas presented in [3] have deficiencies which may sometimes

result in mistakes. By a careful derivation (see the Appendix) we

obtain, for TE modes,

det[F’~~(k)]=O (1)

where the elements of the determinant are given by

Prim(k) = [.T~(kb)YA(ka)– Y(~~)JL(~a)l

~[Jn_m(kd)+(-l)’Jn+m( kd)] (2)
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TABLE I

CUTOFFWAVENUMBERSFORTE MODES

Symmetric Modes Antisymmetric Modes

Our Vishen Kuttler Bounds Our Vishen Kuttler Bounds
Results et al. [2] Lower Upper Results et al. [2] Lower Upper

q = 2/3

d = 0.2

‘q= 0.475

d = 0.315

q = 1/3

d = 2/9

q = 0.5

d= 0.2

q = 0.25

d = 0.25

q = 0.15875

d = 0.379

1.32220

2.4445

3.6217

4.7897

5.9378

1.5158
2.7343

3.9237

4.4035

5.0801

1.5806

2.9065

4.1152

4.2342
5.2673

1.40792
2.6861

3.9295

5.0175
5.1133

1.6810

2.9679

3.9861

4.1650
5.2946

1.7944
2.9992

3.7703

4.1824

1.2522”
2.4365*

3.6209

4.7897

5.9379

1.4407’
2.7256

3.9240
—

5.0799

1.56194
2.9064

4.1152

4.4220”
5.2669

1.3793*
2.6849

3.9295
—

5.1131

1.6650’

2.9678

4.1191

5.2942

1.7769
2.9932

3.8632%

4.1808

. ----- . -----
1.5AM /
2.4408

3.6157

4.7804

5.9218

1.5132
2.7270

3.8978

4.342

4.977

1.5766
2.8968

4.0944

4.2146

5.219

1.40694
2.6837

3.9247

4.9937

5.1031

1.6768

2.9445

3.939

4.105
5.111

1.7603
2.871

3.432

3.76

1.3221

2.4446

3.6218

4,7901

5.9385

1.5159
2.7345

3.9248

4.407

5.084

1.5807
2.9067

4.1161

4.2356

5.270

1.40793
2.6862 ~

3.9298

5.0192
5.1139

1.6811

2.9684

3.988

4.168
5.303

1.7948
3.004

3.775

4.21

1,19175

2.4304

3.6202

4.7896
5.9379

1.3741
2.7196

3.9237

5<0793
5.4232

1.5435
2.9064

4,1152

5.1651
5.2758

1.35218
2.6834

3.9295

5.1131
5.8315

1.6489
2.9678

4.1581

5.0581
5.2964

1.7583
2.9879

4.1614

and for TM modes

det[Q~~(k)] = O

with the elements of the determinant being

Q~~(k) = [.l~(kb)Y~(ka) - Yn(kb).T~(ka)]

“IJn_m(kd)+(-l) ’Jn+m(kd)].

(3)

(4)

Here P and Q, which stand for the determinants, are in bold-

face italics to distinguish them from the quantities in [3]. In both

(2) arrd (4), 1 = m for symmetric modes and 1 = m + 1 for anti-

symmetric modes.

It is obvious that both det [Prim(k)] and det [QnJk)] are

analytical functions and they have no singularities in finite

regions in the complex k plane. The cutoff wavenumbers are

their zeros on the real axis. Many methods can be employed to

determine the zeros of these functions.

In this paper, a new technique is developed for finding zeros

of an analytical function with high accuracy without missing any

roots. This is a problem of great importance, especially for

determining the ‘cutoff frequencies of a waveguide. The contour

integral method, which has been widely used to compute the

external resonant frequencies of scattering objects, is based on

the residue theorem. With integrals along a closed contour, it

can determine the number of zeros (with multiplicity counted)

of an analytical function within a certain region (area inside the

integral contour) in the complex plane, as well as their values

1.1917

2.4307”

3.6203

4.7896
5.9379

1.3740
2.7187

3.9244

5.0796
5.3686

1.5435
2.9058

4.1152

5.1606
5.2758

1.3522*
2.6838

3.9296

5.1131
5.8106

1.6490
2.9667

4.1579

5.0616”
5.2965

1.7584
2.9848

4.1590

1.19001

2.4267

3.6142

4.7804
5.9231

1.3715
2.7125

3.9069

5.041
5.325

1.5393

2.8966

4.0955

5.131
5.237

1.35114
2.6815

3.9247

5.1036

5.793

1.6446

2.9547

4.120

4.978
5.175

1.7330
2.873

3.78

1.19176
2.4305

3.6203

4.7899
5.9385

1.3741
2.7198

3.9247

5.083

5.427

1.5436

2.9067

4.1161

5.167
5.279

1.35219
2.6840

3.9298

5.1138
5.834

1.6490
2.9682

4.160

5.060
5.302

1.7584
2.989

4.17

with considerable accuracy. The method presented here, the

contour integral method combined with Muller iteration, is a

universal and powerful one for solving the problem. In our

program, values given by the contour integral method, which

usually have three or four significant decimal digits, are then

used as the initial values for Muller iteration to obtain the final

results, and higher precision is reached.

Since no poles of det [PnJk)l and det [Q.~(k)l have to be

taken into account, this algorithm is convenient to use. Provided

the contour integral is along a rectangular contour enclosing tlhe
frequency band one is interested in, it can be numerically

performed by Gaussian formulas with high accuracy. Although

the procedure requires additional computation for contour inie-

grals, it requires no more CPU time than that needed by simply

using the Muller method, because iterations for each zero

(usually four to six times in our procedure) are much less than

those needed by using the Muller method only.

Results are normalized by letting the radius of the outer

cylinder equal unity, i.e., b = 1. The zeros of (1) and (3) have

been evaluated for several values of the eccentricity d and the

radius ratio q for the first five TE and TM modes, both

symmetric and antisymmetric. Numerical values accurate to the

sixth decimal place have been obtained, with the order of the

determinants up to 18.

Table I presents the symmetric and antisymmetric cutoff

wavenumbers for TE modes, while the corresponding values for

TM modes appear in Table II. The relative dimensions of the

structure tabulated were selected to be the same as those in [1]
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TABLE II
CUTOFF WAVENUMBERS FOR TM MODES

Symmetric Modes Antisymmetric Modes

Our Vishen Kuttler Bounds Our Vishen Kuttler Bounds

Results et al. [2] Lower Upper Results et al. [2] Lowe uppeI

?J= 0.5

d=O.1

‘q = 0.5

d = 0.2

‘q = 0.5

d = 0.3

q = 2/3

d = 0.2

q== 0.25

d = 0.25

~ = 0.25

d = 0.5

5.46953
6.47472

7.30617
7.86924
8.49647

4.8106
6.1724
7.3945
8.4974
9.3409

4.3071
5.8903

7.3197
8.2909
8.6388

6.2399
7.6769
9.0439

10.3534
11.6134

3.4723
4.9221
5.9268
6.7154
6.7527

2.9824
4.7868

5.8084
6.2439
7.5586

5.4695
6.4747
7.3062
7.8692
8.4965

4.8106
6.1724
7.3945
8.4974
9.3409

4.3071
5.8903

7.3197
8.2909
8.6388

6.2399
7.6769
9.0439

10.3536
11.6184*

3.4723
4,9221

5.9268
6.7154
6.7527

2.9824
4.7868

5.8084
6.2439
7.5592

5.46911
6.47403

7.30527

7.86823

8.4950

4.80935

6.1703

7.3907

8.4894
9.2694

4.3042
5.8736

7.240

8.081

8.382

6.2379
7.6728

9.0323

10.318
11.539

3.4687
4.9110

5.893

6.591
6.622

2.887
4.088

5.47043
6.47547

7.30683
7.86982
8.4972

4.81191
6.1735
‘7.3957
8.4991
9.3488

4.3118
5.8944

7.325
8.316
8.646

6.2420
7.6787
9.0456

10.356
11.616

3.4752
4.9249
5.930
6.723
6.767

2.996
4.827

5.877
6.323
7.735

5.99176
6.92031

7.71232

8.4845

9.3564

5.5114
6.7991

7.9607

9.0091
9.9556

5.1224
6.6210

7.9910

9.1877
9,2676

6.9683
8.3682

9.7053

10.9892
12.2266

4.2640
5.5393

6.6357

7.7135

7.7243

4.0338
5.5432

6.9144

7.1560

8.1858

5.9918
6.9203
7.7123
8.4845
9.3564

5.5114
6.7991
7.9607
9.0091
9.9556

5.1222
6.6210
7.9910
9.1877
9.2676

6.9683
8.3682
9.7053

10.9892
12.2266

4.2640
5.5393
6.6357
7.7135
7.7243

4.0338
5.5432
6.9144
7.1560
8.1858

5.99121
6.91953

7.71130

8.4830

9.3542

5.5098
6.7964

7.9559

8.9996
9.9316

5.1179

6.5994

7.876

8.829
8.900

6.9654
8.3631

9.6922

10.947
12.128

4.2583
5.5239

6.582

7.443

7.488

3.858
4.58

5.99257
6.92102
7.71299
8.4852
9.3572

5.5125
6.8002

7.9619
9.0106
9.9577

5.1257
6.6251

7.997
9.210
9.276

6.9702
8.3700

9.7071
10.992
12.229

4.2680
5.5425
6.641
7.723
7.735

4.043
5.575
6.992
7.208
8.355

and [3]. Both tables also list the results of Vishen et al. [3] and

the lower and upper bounds provided by Kuttler [1] for purposes

of direct comparison.

From the tables one can find that all of our results are within

the bounds reported by Kuttler [I], and are very close to the

upper bounds without any exception. Provided our results are

correct, it can be found that for most cases Kuttler’s upper

bound is closer to the exact value and is good enough. Kuttler’s

upper and lower bounds are obtained independently by con for-

mal mapping and the Rayleigh–Ritz method, respectively. Thus

one can deduce that the Rayleigh–Ritz method is of high

accuracy for the structure, even for high modes.

For TM modes, our results coincide with those of Vishen

et al. [3] except for certain points, but for TE modes our results

do not agree with those of [3] very well. In our opinion, there

are two possible reasons why some of the roots (marked by a

dash) are missing and some (marked by an asterisk) lie outside

the bounds in [3]. The first is that the formulation in [3] has

some deficiencies. Many extrinsic singularities (poles) exist in

the expressions of P~~(k) and Qm~(/c) in [3]. These poles do not

indicate any characteristics of the structure but result from

inappropriate mathematical derivation, and may sometimes lead

to mistakes. For example, they may cause missing modes in

some cases: when d = O, if we select the radii a and b to let

.In(kla) = O and .T~(klb) = O

or

Ym(kza) =0 and Ym(kzb) =0

it is obvious that kl and kz are cutoff wavenumbers of TM

modes although they are not roots of det [ Qmn(k )]. This means

that under certain circumstances, the cutoff wavenumber (zero

of det [l’mn(k)] or det [Qmn(k)]) may be canceled by the poles

(see the Appendix).

The second reason is that the algorithm for finding zeros used

in [3] is not good enough; hence some results are inaccurate and

some modes are even missing. The functions get many disconti-

nuities of the second kind along the real frequency axis, because

det [Pn~(k)] and det [Q~n(/c)] have many poles. Hence, some

algorithms, e.g. bisection, are unsuitable for searching for the

zeros of these functions. On the other hand, by simply employ-

ing iterative algorithms, such as Muller iteration, it is also

difficult to determine the number of zeros of the function within

the given frequency band and to select good initial values.

Nevertheless, without appropriate initial values and the number

of zeros to find, iterative algorithms are somewhat blind and

consequently apt to result in missing modes, as occurs in [3]. The

low precision of certain values in [3], in the authors’ opinion,

should be ascribed to the poor quality of the computing pro-

gram.
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APPENDIX

Taking the TM mode (antisymmetric case) as an example, one

gets from [3]

ij(r, O) = f [A~J~(/cr)+ BwY~(kr)]sin(nzfl) (Al)
m=l

and

AnJ~(ka)+ BmY~(ka) = O. (A2)

By the addition theorem for Bessel functions,

Zm(kr-)ejme = ~ Zm+p(kr’).Tp(ki) e’(p+m)o’. (A3)
~=–cc

Thus we obtain the wave function on the outer conductor:

}
.Jp(kd) sin(rrr + p)(?’. (A4)

Let n = m + p, and change the order of summation in (A4):

n=l \m=l

-[/tmLH(kb) + BmY_n(kb)].l._(kd) )
.sin(rs@’).

It is known that

z_n(x) = (–l)nzn(x).

Hence

Ij(r, e)lr=,= i (~[Am.fn(kb)+ BmYn(kb)]
~=~ ~=1

+L@)+(-lr+l.f .+m(kd)] } Sin(nO’). (AS)

On the outer conductor, the Dirichlet boundary condition should

be met, that is,

l)(l’, f))lr=b=o. (A6)

From (&), ~(r, 0) is represented as a Fourier series of 0’. SO we

deduce that

~ [/lmJn(kb)+ Bm~(kb)]
~=1

[J._m(kd)+(-l)m+ lJ.+H(kd)]=o,

And by (A2), we can define

A B.
cm= ~ ..—

Yn(ka) .I~(ka)

n=l,2,3, .”..

(A7)

Note, if Cm = O, then Am= Bm = O can always hold, and if

CM # O, we can deduce Am+ O or Bm + O (because Y~(ka) and

.l~(ka) can never have the same zeros).’ Hence (A7) is equivalent

to the following equations:

~ C~[.Tn(kb)Ym(ka) - ~(kb).fn(ka)]
~=1

[J~_Jkd)+(-l)m+ l.f~+Jkd)] =0, rs=l,2,3 (A8)

written in matrix form, i.e.,

[Qnm(k)][cml=o

in which rn and n indicate columns and rows, respectively, and

Q.m= [J.(kb)KJka)- Y.(kb)Jm(ka)]

~[Jn_Jkd)+(-l)~+ ’Jti+Jkd)] .

Suppose, for k = k~~ that makes det [QnJk)] vanish, i.e.,

det[Q~n(k~~)] = O.

Then of course one can get a nontrivial solution [Cm]+ O. So,

[Am] + o or [Bm] # O, and the field can take a nontrivial solu.
tion. This means that kT~ represents a cutoff wavenumber of

the waveguide. Otherwise, if

det [Q.m(kTM)] # O

one readily deduces that [Cm] can take a trivial solution only,

and consequently [Am] and [B~] take a trivial solution simulta-

neously. This means that the field takes a trivial solution, so

k~~ cannot be a cutoff wavenumber.

If one defines

Cm= .fm(ka)Am = – Yn(ka)Bm

expressions for Q~Jk) in [3] can be obtained. However, prob-

lems sometimes arise. Although [Cm] has a trivial solution only,

[Aml and [lIml can take a nontrivial solution, provided ka is a

zero of .T~(x) or Y~(x). This means thd{ when the cutoff

wavenumber coincides with a zero of .l~(x) or Y~(x), it will

probably be missing.

Introducing a Neumann boundary condition into the above

procedure and taking derivatives with respect to r’ on both sides

of (A3), one can obtain expressions for Prim(k). A discussion of

TE modes is similar to the above.
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An Efficient Algorithm for Transmission Line

Matrix Analysis of Electromagnetic Problems Using

the Symmetrical Condensed Node

Cheuk-yu Edward Tong and Yoshiyuki Fujino

Abstract —T~e symmetrical condensed TLM node has been closely
examined. An efficient algorithm has been developed from the results of

this study which significantly improves the numerical effk’iency of the

node. Certain physical aspects of the symmetrical condensed node are

also disc&sed.

I. INTRODUCTION

The transmission line matr~ (TLM) method has now been

established, owing to the works of Johns [1] and Hoefer [2], as

one of the most powerful time-domain solvers of electromag-

netic problems [3], [4].

The symmetrical condensed node invented by Johns [5] has

proved to be a particularly valuable tool in TLM analysis. Since

it represents both the electric and the magnetic field at the same

point in space, it is more attractive than the expanded node

used in other TLM networks [6], in the Finite-Difference Time-

Domain (FDTD) method [7], and in the spatial network method

[81. Besides, as a consequence of the simplicity of node topology,
ambiguities of interfaces and boundaries are removed. The node

has ~ecently been extended to cover 10SSYmedia [9].

The disadvantage of the symmetrical condensed node is that

no equivalent circuit can be drawn up to represent it. It is solely

characterized by a scattering matrix. The user, therefore, has to

perform a linear transformation using an 18X 18 scattering

matrix at each nodal point. This means that the numerical

efficiency is inherently low. Further, the nature of this scattering

matrix has rarely been discussed.

In this paper, we demonstrate that an efficient algorithm can

be’ obtained for the symmetrical condensed node. Such an

algorithm not only shortens the computation time but also- helps

to unlock the physics hidden behind the scattering matrix. We

shall first discuss the case of the original node before moving on

to the Iossy’node. Final’ly, numerical examples @l be presented.
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II. THE SYMMETRICAL CONDENSED NODE

The basic structure of the symmetrical condensed node as

proposed by Johns is given in Fig. 1. It is connected to each of

its six neighbors by a pair of transmission lines, carrying orthog-

onal polarizations. These lines are numbered 1 to 12. The node

is also connected to six stubs, one for each field component. The

three electric or permittivity stubs (numbered 13 to 15) are

open-circuit, while the magnetic or permeability stubs (16 to 18)

are short-circuit. Hence, each node receives 18 input impulses at

each time step.

Scattering takes place at the center of the node. The 18 input

impulses ~’ are scattered to produce 18 output impulses ~’

into the 18 ports:

y’ = s.~’. (1)

The scattering matrix, S, has been derived by Johns from

Maxwell’s equations and is shown in Fig: 2. The elements of the

matrix” assume the following values:

– Yp Zq
a=

‘q 2(4+~) + 2(4+Zq)

4
b.= ‘P= 2(4+yp)

– Y, Zq
cP~= 2(4+YP) – 2(4-I- Z,)

4

~. ‘~q= ~(4+zq)

fq = Zqdq

gp = Ypbp

~ = (V-4)

p (q+4)

(4-zq)

j,= (4+zq)

where the subscripts p, q = x, y, or z. The subscript p is related

‘to the associated permittivity stub of the port in question and q

is related to the associated permeability stub (See Fig. 2 for the

associations). For example,

S29 = Cxy.

Note that Yp is the normalized characteristic admittance of the

electric stub p, and Zq is the normalized characteristic

impedance of the magnetic stub q.

III. THE SCATTERING MATRIX

Although the scattering matrix appears to be very compli-

cated, it possesses a high degree of symmetry. We have ex-
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